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The influence of the poloidal variation of the density on the
locally measured velocities induced by biasing experiments
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Abstract

The plasma edge plays an important role in the physics of improved confinement. In this region, the shear of the
radial electric field and the related rotation are thought to be responsible for the suppression of turbulence. We have
developed a consistent set of experiments and theory to analyse these important phenomena. An electric field is set
up with a biasing electrode. The resulting rotation velocities are measured with an inclined Mach probe. The
measurements are then compared with the predictions of a theoretical fluid model. In this model, parallel viscosity
and neutral friction were already identified as important components to explain the very important and localised
electric fields. In this paper we focus on compressibility effects and show that it is necessary to take the poloidal
variation of the density into account to explain the measured rotation velocities. © 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

It is well known that large poloidal and toroidal flows
and very important, localised electric fields can be cre-
ated in the edge plasma by electrode biasing. These
flows, as they vary rapidly in space, are thought to be
responsible for the suppression of turbulence and thus
for the creation of transport barriers and improved
confinement modes as the H-mode [1].

In an electrode biasing experiment, an electrode with
its tip a few centimetres inside of the separatrix forces a
radial current through the plasma. This current is the
main driving force for the rotation. It is balanced by
friction mechanisms for which we will retain as in [2,9]
the parallel viscosity and interaction with neutrals. The
importance of the convection term and of the perpen-
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dicular viscosity has been treated in [2-5]. In this paper,
we propose to assess the importance of the poloidal
variation of the density (further referred to as ‘com-
pressibility’) on the flow velocities as observed in TEX-
TOR-94.

We will establish a fluid model and confront the re-
sults predicted by this model with experimentally mea-
sured velocities and electric fields, both in L- and
H-mode. These quantities are obtained with an inclined
Mach probe as described in [6]. We will show that es-
pecially the toroidal velocity is influenced by compress-
ibility. Because we can explain the measured toroidal
rotation to a fair degree, we have an experimental veri-
fication of this effect, which was for the first time treated
in [7,8]. The authors however omitted viscosity, resulting
in shocks. Also Rozhansky and Tendler [9] estimated
poloidal compressibility but using a kinetic approach.
As their model does not contain the, in our opinion,
important neutral friction force [2,10], it cannot be ap-
plied to the TEXTOR data.

In the next section we will briefly discuss our theory,
while Section 3 is devoted to the comparison with the
experiment. Conclusions are drawn in Section 4.
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2. Theory

We start with the fluid equations as given in [11]:
- () =0, (1)
V(m-n-VP)=-Vp—V-T+(J xB) + Faotrats, (2)

where 7 is the flow velocity, n the density, p the total
pressure, 7t the viscosity tensor, J the current density, m
the ion mass, B the magnetic field and the neutral drag
force is given by Freurals = —Vv - V, where v is a drag co-
efficient as defined in [12]. These equations will be used
to compute the radial electric field (£;) and the rotation
velocities. We will work in a circular toroidal geometry
(r,0 and ¢ are the radial, poloidal and toroidal co-or-
dinates) and neglect the Shafranov shift as we are
working in the edge where it is small. Further, we as-
sume that all quantities are composed of a poloidally
constant part and a poloidally varying part, such that:

X(r,0) =X (r) + X(r,0). (3)

For the poloidally constant part we will take the flux
surface average defined as

X() = () :% / %X(r, 0)do, )

(R is the major radius) so that the variable part can be
computed as X(r,0) = X(r,0) — X(r). We will assume
that X /X is at most of order & = r/R,. Corrections of
O(&?) will be neglected.

In a toroidal axi-symmetric geometry, the continuity
equation reads

0
i (R 1) =0, (5)
so that
_F(r)(R, 7
%RD(R_ﬁ) ©

where F(r)/R, is an as yet unknown flux function ex-
pressing the average poloidal rotation.

The radial electric field will be supposed poloidally
constant, because of the important parallel conductivity
of the plasma. The radial ion momentum equation then
results in

1 1 op\ 1 R V(r)
VLfg(—Er-Faa)—EV(V)fR—OCOSO( B, s (7)

where o is the angle between the parallel and toroidal
directions and ¥ (r)/B, is a second flux function intro-
ducing the electric field and related to the average per-
pendicular rotation. As the pressure gradient term in
biasing experiments is always much smaller than the
electric field, we will drop it for the moment. Note

however that this reduces the applicability of the for-
mulas to the region where the field is sufficiently high.

Application of the projection relations then allows us
to compute the toroidal velocity:

1 (F@r)R, V()R nF(r)
%—é(ROE‘E:E‘;&> ®

with @ = sino/cosa. We are now ready to exploit the
momentum equation (Eq. (2)), the parallel projection of
which, only retaining viscosity and neutral drag, reads

(é-ﬁ%)qt(vé-r?):o. 9)

The surface averaged version of this equation gives a
first relation between F(r) and V' (r):

<(Eﬁ-%)>+<(w§ﬁ>>:o. (10)

Multiplication with B is important as then the viscosity
term can be written as

5 o 301, (F(r)
(B-92) =53 T (T2~ oo, (1)
with VNEO = —05(1/2@ Bo)(aT,/aI”) and
VG Vi e 1 vig? )
o = minR2 ( e m 4 — (12)
3 R, 31+ U2,

and where U, = —E,/(BgVni). The other symbols have
their usual meaning.

Note that the neutral friction [12] and the viscosity
coefficients (12) are proportional to the ion density; we
will express this dependence explicitly by v=
nv* = (i +n)v* and n, = ny, while we also introduce
the parameter A = n*/v*.

The surface averaged toroidal projection of Eq. (2)
introduces a second relation between the unknown
functions F(r) and V' (r):

I, =S{J;) = <inv*V4,>, (13)
By
where S is the surface through which the current flows.
It is important to note that the contribution of the
parallel viscosity vanishes from this expression [2,13].
The averaged equations (10) and (13) are to O(¢?)
independent of 7 so that their solution yields F(r) and
V(r) for an imposed radial current and known ion
density, temperature and neutral density profiles.
In a second step we then solve Eq. (9) posing:
/it = Real(N.e'?), resulting in:

- {0 [ )

+ V;r) }23 cos 0. (14)

o

=t

S =




964 M. van Schoor et al. | Journal of Nuclear Materials 290-293 (2001) 962-966

3. Discussion

We propose to examine electrode biasing results ob-
tained in TEXTOR-94. The discussed velocity profiles
were obtained by an inclined Mach probe measurement
as explained in [6]. Relevant parameters are R, =
1.75 m, B, =2.33 T, ¢(0) = 0.88, g(Separatrix) = 6.7,
Te~40eV, Ti~40eV, n=~10" m3. The biasing
electrode penetrates 5 cm inside of the separatrix, with a
conducting tip of 1.5 cm. We will examine an L-mode
for which the electrode current is /, = 163 A, and an H-
mode for which we have I, = 110 A.

We can now compare the experimental results with
our model. For the temperature and ion density profiles
we take experimental values while the neutral density is
modelled by an exponentially declining function towards
the centre: n, = ny, exp(—(r — a)/A) , where ny, is the
neutral density at the separatrix, 4 the decay length and
a is the radial position of the separatrix. The parameters
ny and 4 are adjusted so as to have a good agreement
between the measured and computed electric field. We
then compute the velocities (¥ and V) and compare
them with the experimental results.

A first important observation is that the electric field
peaks sharply in the vicinity of the separatrix (Fig. 1)
and becomes small again well inside of the region where
the radial current is constant (—3.5 cm < r —a < 0 cm).
This behaviour can qualitatively be understood when
V(r) is eliminated between Egs. (10) and (13), resulting
in:

_F(r) 3

Ry VI*Z—R(Z)'FV*(l +2q2)

B, 3 an*
=122 — Wago = —.
s N R

(15)

20

(@

Note that F(r)/R, (the average poloidal rotation) is al-
most equal to V' (r)/B, (the average perpendicular rota-
tion) because the angle between the poloidal and the
perpendicular directions is small. Therefore, the fol-
lowing discussion is valid for both quantities. Note also
that —V (r) is related to the radial electric field by means
of Eq. (7). At the right-hand side of Eq. (15) we recog-
nise the driving terms and note that the second one
(—VaEeo) is much smaller than the first one in the case of
biasing. Furthermore, I; is constant in the region where
the field peaks, so that the left-hand side of the equation
must also be constant.

At the left-hand side we recognise the factor
7" (3/2R%) + v*(1 + 2¢%), the first term of which repre-
sents the viscosity n* which decreases slightly towards
the separatrix because of the decreasing temperature.
The second term contains the factor (1 + 2¢*) which
increases a few percent in the interval of about 1 cm
where the electric field is high. The second factor, rep-
resenting the neutral friction, also increases because it is
proportional to the neutral density. Fig. 2 however de-
picts the ion and neutral densities used in the H-mode.
From this figure it is clear that the ion density decreases
much more rapidly than the neutral density increases.
Therefore, F(r) must increase. But an increase in F(r)
and thus in E;, means a reduction of the viscosity (see
Eq. (12)) so that, according to Eq. (15), F(r) must fur-
ther increase until finally kept in check by neutral fric-
tion. The same arguments are valid for the L-mode,
though here all the effects are less extreme. It is now also
clear that n,, is directly related to the value of E, at the
separatrix. In H-mode, as the electric field is higher than
in L-mode, n,, must be smaller (1,01 = 1.5 x 107 m~3,
Moy = 0.3 x 107 m~3). This result was already con-
firmed in [10].
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Fig. 1. (a) Electric field E; vs. minor radius » — a in L- and H-mode. (b) Comparison between measured (dots) and calculated £, (solid

line).
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Fig. 2. Ion and neutral density in the H-mode.

The sharp increase in E, will quench turbulence be-
cause of the shear in the related velocities, and thus re-
duce radial transport so that the density further drops at
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the location of the slope of the field. This effect, according
to Eq. (15), again helps to steepen the electric field.

Once inside of the scrape off layer, /. is no longer
constant as it is deviated towards the limiter. The shape
of the electric field and of the rotation velocities is then
largely set by the decreasing radial current.

We now turn our attention to the toroidal rotation,
the main feature of which is that it peaks at a different
radial location than E., as shown in Figs. 3(a) and (b),
depicting the measured toroidal velocities at the out-
board equatorial plane (0 = 0). In ¥}, the influence of
compressibility is most strongly noted. Indeed, when
in/n =0, Eq. (8) reduces to (we take F(r)/R, = V(r)/B,
for this argument):
1 [F(r) R,

""=%| R R B, R,

V(r) R

~ —2q$ cos 0, (16)

o

which means that ¥, would be very large and would
have the same shape as the electric field (see Figs. 3(a)
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Fig. 3. (a-d) v, and vy vs. minor radius » — @ in L- and H-mode. Comparison between measured (o) and calculated velocities, with 71/7

(*) and without 71/7 (dashed line).
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and (b), upper curves, and note that the calculated ve-
locity is reduced by a factor 4 in the case of the H-
mode). When now compressibility is added, we see that
Eq. (14) reduces to

S =

= —2¢ cos 0, (17)

when the electric field is high and A goes to zero. Eq. (8)
then becomes

Nl F(r) ‘ V(r)
V¢~5 R, (1 —gcosl) — B.
X (1+80050)+230050F1§r) ,
~ (14 ¢&cos0)(Vy). (18)

The result is that the local velocity behaves in the same
way as the average toroidal rotation, while the strong
effect of E, is eliminated. The thus obtained velocities are
also depicted in Figs. 3(a) and (b) and show much better
agreement with the experiment, in the H-mode as well as
in the L-mode.

According to Eq. (13), (V) should furthermore
vanish when 7, drops to zero at the tip of the electrode
which is also reproduced in the plots.

Figs. 3(c) and (d) show the effect of compressibility
on the (local) poloidal velocity. The effect here is less
pronounced than on the toroidal velocity. Nevertheless
it is clear that the inclusion of compressibility gives
better agreement with the experiment.

Finally we are able to compute the poloidal variation
of the radial current density from Eq. (2), the toroidal
projection of which, together with Egs. (8) and (17),
reduces to

nv*
Jr:BO—@<V¢>(1 — 3&% cos’ 0), (19)

showing that J; is poloidally constant to O(e?).

4. Conclusions

We can conclude that our model, which includes
neutral friction parallel viscosity reduced by the electric
field and compressibility, is capable of explaining the
measured velocities as well as the electric field, not only
qualitatively, but also quantitatively. The effect of
compressibility is most noteworthy in the toroidal ve-
locity. Although its potential significance in the case of
strong rotation was already mentioned in [9], we have
shown here a clear experimental proof.

As in our theory the neutral density is the only fitting
parameter, the measurement of the electric field or of the
toroidal rotation can be used to deduce the neutral
density.
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